

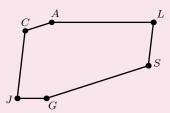
## PoTW 1: Week of 5-27-2021 (solution)\*

Problem of the Week at shsmathteam.com

## Problem of the Week #1: Vexing Hexagon

Topic: Geometry

Hexagon ALSGJC has the curious property that all of its opposite sides are parallel; that is,  $\overline{AL} \parallel \overline{GJ}$ ,  $\overline{LS} \parallel \overline{JC}$ , and  $\overline{SG} \parallel \overline{CA}$ . Suppose that  $\overline{AL} = 21\sqrt{2}$ ,  $\overline{LS} = 9\sqrt{3}$ ,  $\overline{SG} = 18\sqrt{3}$ ,  $\overline{GJ} = 9\sqrt{2}$ ,  $\overline{JC} = 14\sqrt{3}$ , and  $\overline{CA} = 7\sqrt{3}$ . If R is the length of the circumradius of  $\triangle ASJ$ , compute  $(R^2 - 378)$ .



Source: CMC Mock ARML, by Eric Shen.

<sup>\*</sup>For inquiries: andliu22@students.d125.org

Before diving into the solution, we begin with a brief segue on Power of a Point, which not only ends up being the crux of our problem, but more generally is extremely useful for a wide variety of different geometric configurations. The way that the theorem is normally formulated looks something like the following:

**Power of a Point:** Consider a circle  $\omega$ , and a point Q which does not lie on  $\omega$ . Let AB and CD be two chords of  $\omega$  such that Q lies on the intersection of  $\overrightarrow{AB}$  and  $\overrightarrow{CD}$ . Then

$$QA \cdot QB = QC \cdot QD$$
.

Note that this definition encompasses all possible cases: if Q lies outside of  $\omega$ , then we have two secants (or tangents, in the cases that point A is equal to point B, or point C is equal to point D); and, if Q lies inside  $\omega$ , then we have two intersecting chords.

Of particular interest to us is the invariance of the quantity  $QA \cdot QB$  encoded in the statement of the theorem; in other words, regardless of the location of the chord AB with respect to  $\omega$ , the theorem tells us that this quantity will always be constant. Therefore, for any point Q, we can call the value of this quantity as the *power* of Q with respect to  $\omega$ , which we can denote as  $P(Q, \omega)$ .

Because this quantity is the same for any arbitrary chord that we choose in  $\omega$ , we can calculate it by choosing the chord which lies on the same line determined by Q and the center of  $\omega$ , call O. Let R denote the radius of  $\omega$ . Then, using this chord, we get that

$$P(Q, \omega) = (OQ + R)(OQ - R) = OQ^2 - R^2$$
,

where  $P(Q, \omega)$  is negative if R lies inside  $\omega$ , zero if R lies on  $\omega$ , and positive if R lies outside of  $\omega$ .

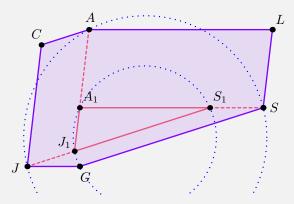
Reformulating the original PoP theorem in terms of  $P(Q, \omega)$  vastly expands the usage of the theorem and its applicability to more complex problems. For our purposes, we only examine one particular corollary of this reformulation:

**Corollary:** Any set of points  $\mathcal{H}$  which all have the same power with respect to  $\omega$  lie on a circle concentric to  $\omega$ .

The proof follows naturally from the definition of  $P(Q, \omega)$ . For any point  $A \in \mathcal{H}$ , because we must have  $P(A, \omega) = OA^2 - R^2$ , for the power to be constant, we simply require that OA be constant. In other words, we must have that all the points in  $\mathcal{H}$  lie at a fixed radius from O, which concludes our proof. We are now ready to present our solution.

**Solution** (intended, by the problem author):

This solution is also equivalent to the solution submitted by Jessica He!



Construct points  $A_1$ ,  $S_1$ , and  $J_1$  in the interior of our hexagon, so that  $ALSA_1$ ,  $SGJS_1$ , and  $JCAJ_1$  are parallelograms. Let  $\omega$  be the circumcircle of  $\triangle A_1S_1J_1$ , and observe that we have

$$P(A, \omega) = AA_1 \cdot AJ_1 = LS \cdot JC = 378,$$
  
 $P(J, \omega) = JJ_1 \cdot JS_1 = CA \cdot SG = 378,$ 

$$P(S, \omega) = SS_1 \cdot SA_1 = GJ \cdot AL = 378.$$

It follows that the circumcircle of  $\triangle ASJ$  is concentric to  $\omega$  (by our corollary above). Therefore, if we let r denote the length of the radius of  $\omega$ , then we have

$$378 = P(A, \omega) = R^2 - r^2 \implies R^2 - 378 = r^2$$

so it suffices to compute  $r^2$ . But note that because of the nature of the opposite parallel sides of our hexagon, we have  $A_1J_1=JC-LS=5\sqrt{3}$ ,  $A_1S_1=AL-GJ=12\sqrt{2}$ , and  $S_1J_1=SG-CA=11\sqrt{3}$ . Therefore,  $\triangle A_1S_1J_1$  is a right triangle with hypotenuse  $11\sqrt{3}$ , and thus

$$R^2 - 378 = r^2 = \left(\frac{11}{2}\sqrt{3}\right)^2 = \frac{363}{4}.$$