

PoTW 11: Week of 8-5-2021 (solution)*

Problem of the Week at shsmathteam.com

Problem of the Week #11: OhMo

Topic: Number Theory Source: 2019 OMO

Let $\{F_n\}_{n\geq 0}$ be the usually defined Fibonacci sequence $(F_0=0,\,F_1=1)$. Suppose that d is the largest positive integer such that, for all integers $n\geq 0$, d divides $F_{n+420}-F_n$. Compute the remainder when d is divided by 130.

^{*}For inquiries: andliu22@students.d125.org

Solution (pad, AoPS):

The answer is 0.

First note that if d divides $F_{420} - F_0$, and $F_{1+420} - F_1$, then d also divides $F_{n+420} - F_n$ for any n, by adding. Now, it suffices to calculate:

$$\begin{split} \gcd\left(F_{421}-1,F_{420}\right) &= \gcd\left(F_{419}-1,F_{420}\right) \\ &= \gcd\left(F_{419}-1,F_{418}+1\right) \\ &= \gcd\left(F_{417}-F_3,F_{418}+F_2\right) \\ &= \gcd\left(F_{417}-F_3,F_{416}+F_4\right) \\ &\vdots \\ &= \gcd\left(F_{211}-F_{209},F_{210}+F_{210}\right) \\ &= F_{210}. \end{split}$$

To finish, there are many ways to calculate F_{210} (mod 130). The cleanest is probably to utilize the fact that $F_m|F_n$ for any m|n. This gives us that F_3 , F_5 , $F_7|F_{210}$, so in fact $2\cdot 5\cdot 13=130|F_{210}$ and our answer is 0, as desired.