

PoTW 15: Week of 9-2-2021 (solution)*

Problem of the Week at shsmathteam.com

Problem of the Week #15: two alg practice problems

Topic: Number Theory Source: David Altizio

(1). Given that $\sum_{k=0}^{\infty} {2k \choose k} \frac{1}{5^k} = \sqrt{5}$, compute the value of the sum

$$\sum_{k=0}^{\infty} {2k+1 \choose k} \frac{1}{5^k}.$$

(2). Suppose x and y are real numbers such that

$$x^2 + xy + y^2 = 2$$
 and $x^2 - y^2 = \sqrt{5}$.

Calculate all possible distinct values of x.

^{*}For inquiries: andliu22@students.d125.org

Part (1)

Solution 1:

Let S be the value of our desired quantity. Multiplying by 2, we get that

$$2S = \sum_{k=0}^{\infty} 2 \binom{2k+1}{k} \frac{1}{5^k}$$

$$= \sum_{k=0}^{\infty} \frac{2k+2}{k+1} \cdot \frac{(2k+1)!}{k!(k+1)!} \frac{1}{5^k}$$

$$= 5 \sum_{k=0}^{\infty} \binom{2k+2}{k+1} \frac{1}{5^{k+1}}$$

$$= 5 \left(\sum_{i=0}^{\infty} \binom{2i}{i} \frac{1}{5^i} - 1\right),$$

so
$$S = \frac{5(\sqrt{5}-1)}{2}$$
.

Solution 2:

Solution submitted by Jeffrey Chen!

As in our first solution, let S be the value of our desired quantity. We have that

$$S = \sum_{k=0}^{\infty} {2k+1 \choose k} \frac{1}{5^k}$$
$$= 2 \sum_{k=0}^{\infty} {2k \choose k} \frac{1}{5^k} - \frac{1}{k+1} \sum_{k=0}^{\infty} {2k \choose k} \frac{1}{5^k}.$$

Recognize that the right-hand sum mimics the generating function for the Catalan Numbers, which is given by

$$\sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{n+1} x^n = \frac{1 - \sqrt{1 - 4x}}{2x}.$$

Plugging in $x = \frac{1}{5}$, we get

$$S = 2\sqrt{5} - \frac{1 - \sqrt{1/5}}{2/5} = \frac{5\sqrt{5} - 5}{2}$$
,

as desired.

Part (2)

Sketch (Benq):

Let a=x+y, b=x-y, whence the two given equations can be rewritten $3a^2+b^2=8$, $ab=\sqrt{5}$. Solving gives $(a,b)=(\pm\sqrt{\frac{5}{3}},\pm\sqrt{3}),(\pm1,\pm\sqrt{5})$. These can be used to solve for x, some of which may be extraneous.