

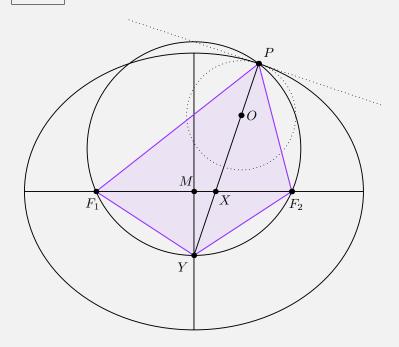
PoTW 22: Week of 12-3-2021 (solution)*

Problem of the Week at shsmathteam.com

Problem of the Week #22: Cool Ellipse problem

Geometry

Source: Tovi Wen


Let $\mathcal E$ be an ellipse with a major axis of length 10. Circle ω with center O is tangent to $\mathcal E$ at P. The line OP intersects the major and minor axes of $\mathcal E$ at X and Y, respectively. Suppose that PX=4 and PY=6. Find the distance between the foci of $\mathcal E$.

^{*}For inquiries: andliu22@students.d125.org

Solution:

Solution equivalent to the submissions by **Jeffrey Chen!**

The answer is $10\sqrt{3}/3$

Let F_1 and F_2 be the two foci of \mathcal{E} . By the reflection property of ellipses, OP bisects $\angle F_1PF_2$. Because Y lies on the perpendicular bisector of F_1F_2 , it follows that YF_1PF_2 has circumcircle ω

Let M be the center of \mathcal{E} , $c=F_1M=F_2M$, and d=MX. By power of a point wrt X in ω , $(c+d)(c-d)=8 \implies c^2-d^2=8$. Moreover, by Ptolemy's, we have:

$$PF_1 \cdot YF_2 + PF_2 \cdot YF_1 = F_1F_2 \cdot PY = 12c.$$

But because $YF_1 = YF_2$, and $PF_1 + PF_2 = 10$, the above expression simplifies:

$$12c = 10 \cdot YF_1$$

$$= 10\sqrt{F_1M^2 + MY^2}$$

$$= 10\sqrt{c^2 + 2^2 - d^2}$$

$$= 20\sqrt{3}.$$

Therefore, $2c = 10\sqrt{3}/3$, as desired.